Development of a ZnO-modified light-scattering sensor for the detection of alcohols.

نویسندگان

  • Song-Ji Nian
  • Jyisy Yang
چکیده

A light-scattering sensor that incorporated zinc oxide (ZnO) nanoparticles was developed and characterized in this study. Evenly distributed nanostructured ZnO materials were formed on the sensing elements through the calcination of zinc acetate-treated sensing elements in a high-temperature oven. There was a large change in the scattering properties of the nanostructured ZnO materials after adsorption of the target compounds; this behavior was exploited for quantitative purposes. To investigate the detection of volatile compounds using this method, both static and flow cell-type devices were constructed. To determine the most suitable nanostructured ZnO material for the light scattering sensors, several factors that influenced their morphologies, including the calcination temperature, calcination time, and the amount of ZnO colloidal solution for calcination, were examined. Fiber-like ZnO structures were produced at temperatures below 400 degrees C. Above 400 degrees C, particles having round shapes were observed; the higher the calcination temperature, the larger the particle sizes. Based on an examination of the signals from several volatile organic compounds, the prepared ZnO sensor was selective for the detection of alcohols, and the observed signals followed the surface-adsorption mechanism. The prepared sensor is fast in response, and the detection time can be shorter than 2 min. For quantitative purposes, the linear range was limited to low concentrations of alcohols, i.e., up to ca. 200 ppm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tapered Optical Fiber Coated with ZnO Nanorods for Detection of Ethanol Concentration in Water

This work presents ZnO nanorods coated multimode optical fiber sensing behavior in response to ethanol solution. The sensor operates based on modulation of light intensity which arises from manipulation of light interaction with the ambient environment in sensing region. For this purpose, two steps are experimentally applied here; etching and then coating fiber with ZnO nanorods to provide stro...

متن کامل

Use of laser-triggered gold nanoparticle-grafted dual light and temperature-responsive polymeric sensor for the recognition of thioguanine as anti-tumor agent

Objective(s): Today, there is an urgent need for improved sensor materials for drug sensing and effective monitoring and interventions in this area are highly required to struggle drug abuse. The present study aimed to synthesize a thioguanine-responsive sensor based on a nanocomposite consisting of AuNP-grafted light- and temperature-responsive poly butylmethacrylate-co-acrylamide-co-methacryl...

متن کامل

The Effects of Nano In2O3 and ZnO on the CO Gas Detection of the SnO2 Sensor

The pellet-type SnO2 sensor was synthesized by the solid state method and the effects of additives such as nano ZnO (1-12 mol %) and nano In2O3 (1-10 mol %) on the CO gas sensitivity of sensor were investigated. The optimum sintering temperature was chosen 800°C because of the porosity content of the samples. The phase analysis and microstructure of the samples were studied by x-ray diffraction...

متن کامل

Visible Light Photodegradation of Phenol Using Nanoscale TiO2 and ZnO Impregnated with Merbromin Dye: A Mechanistic Investigation

ZnO and TiO2 nanoparticles wereimpregnated with merbromin dye and used as modified photocatalysts for degradation of phenol. Dye-modified ZnO and TiO2 showed significantly higher photocatalytic activity than neat ZnO and TiO2 under visible light illumination. Moreover, the prepared dye-modified ZnO showed superior photocatalytic efficiency in degrad...

متن کامل

Sulfur modified ZnO nanorod as a high performance photocatalyst for degradation of Congoredazo dye

Sol-gel derived sulfur modified and pure ZnO nanorod were prepared using zinc chloride and thiocarbamide as raw materials. Prepared nanorods were characterized by means of X-ray diffraction (XRD), thermogravimetry- differential scanning calorimetry (TG–DSC), UV- Vis absorption spectroscopy, Brunauer Emmett Teller (BET) specific surface area and Barrett Joyner Halenda (BJH) pore size distributio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical sciences : the international journal of the Japan Society for Analytical Chemistry

دوره 26 4  شماره 

صفحات  -

تاریخ انتشار 2010